
Wi-Fi Direct P2P Messenger-Browser App

Anand Sekar
anand272@cs.washington.edu

Michael Flanders
mkf727@cs.washington.edu

Source Code
Can be found in this GitLab repository.

Abstract
Modern internet and cell networks offer little privacy and
anonymity. These infrastructures also cannot always be
relied upon. During natural disasters, protests, or other
emergencies, or when cellular data and access points are
not available, communication needs to rely on something
else. Peer-to-peer (P2P) networks have emerged as a vi-
able alternative. For our project, we addressed these pri-
vacy and availability issues by creating a P2P messenger
and HTML server application for Android devices. Our
application allows users to chat 1-on-1 with other users
and offers limited web browsing through a dedicated peer
that acts as a downlink from the Internet. Although our
prototype only works on Android, our implementation
uses Wi-Fi Direct and a JSON API for communication
between clients, so our protocol can run on any device
using Wi-Fi Direct.

1 Introduction

Much of today’s communication is held up by and routed
through the Internet backbone - an enormous, intercon-
nected network provided by Internet Service Providers
(ISPs) and monitored by several governmental and cor-
porate entities. As a result, tracking an individual’s inter-
actions with the Internet is performed by entities like ad-
vertising agencies; simply talking about or searching for
certain products or brands will result in corresponding
ads being displayed throughout sites which use Google
AdSense or similar services [4].

A host of cryptographic security paradigms have been
implemented at each and every layer of internet commu-
nication [14] in order to preserve the confidentiality and
integrity of important interactions - such as logging into

a company’s website to access sensitive information or
into one’s bank account. Anonymity and privacy, how-
ever, are extremely difficult to achieve, and are some-
times reasonably traded for accountability. Virtual pri-
vate networks (VPN) and onion routing (such as Tor)
have become popular methods for preserving anonymity,
but have their vulnerabilities [9] [8].

For instance, suppose one is attempting to maintain
anonymity by connecting to the internet via a VPN while
using a browser app on their phone in private/ incognito
mode. Their identity is potentially exposed when push
notifications are initiated by apps, such as email and so-
cial media, which contain identifying information related
to their accounts.

For another example, suppose Alice and Bob are at-
tempting to communicate without anyone else knowing
that they are. Even when using end-to-end encrypted
communication, ISPs can see their traffic. Authorities
can deploy devices called StingRays which act as a small
cell tower to identify and even track phones within its
range; it can allow them to read unencrypted metadata.
The aforementioned example involving push notifica-
tions also apply here: devices connected to the internet
exchange a complex wealth of information which can be
used to establish one’s identity, even if all one wants to
do is communicate with one other person or view a web
page [13] [17].

Ultimately, it’s difficult to trust complex networks and
services when all one wishes to do are simple, iso-
lated actions. One approach to preserve privacy is us-
ing proven cryptographic key exchanges and encryption -
which works; however the unnecessary complexity of the
interaction is left untreated. Another approach - which
can be done in tandem with cryptography - is simply
reducing the complexity of the interaction, making the
possible security vulnerabilities few and apparent. If all
Alice wants to do is talk to Bob, then Alice should be
able to do that without routing that entire process through
the backbone. Direct communication is lacking. In this

https://gitlab.cs.washington.edu/anand272/550_p2p


project, we explore establishing a direct connection be-
tween two devices independent of existing Internet/cell
networks.

2 Background

Before we describe the app and its architecture, this sec-
tion summarizes some relevant background information
on Wi-Fi Direct.

Figure 1: Diagram of a P2P concurrent device taken from
the Wi-Fi Direct specification v1.8 [3]

2.1 Wi-Fi Direct
Wi-Fi Direct allows devices to set up a P2P wifi network
without needing a wireless router or other access points.
In a home network that can contain printers, smart televi-
sions, gaming consoles, and Internet-of-Things (IoT) de-
vices, such devices are usually predetermined to be a P2P
Group Owner (GO) [3]. In our app, however, the group
owner is just the application client that another client is
trying to connect to. The GO devices are responsible for
being an “AP-like” entity that provides basic service-set
functionality and services for their connected clients [3].
The GO devices may also provide communication be-
tween their clients and access to a simultaneous WLAN
connection like we do in our application and as shown in
Figure 1.

We decided on using Wi-Fi Direct for the project be-
cause it was easy to get a prototype working and tested;
we both have 2 Android devices to test with, and the Wi-
Fi Direct development API on Android is pretty easy to
use. Wi-Fi Direct also uses WPA2 which helps meet our
need for privacy and security talked about in §3.

3 Goals

Our goal was to create an accessible, peer-to-peer com-
munication network that does not does not rely on the

Internet or cellular infrastructure. We made a checklist
of features in our project proposal that our P2P network
was supposed to implement.

Here is the list sorted descending by order of impor-
tance:

1. Enable at least two devices to communicate with
each other independently from the Internet/cell net-
works

2. Provide some user interface

3. Use end-to-end encryption for communication

4. Be accessible through different devices (phones,
laptops, etc. . . )

5. Enable multiple devices to communicate with each
other simultaneously

6. Be long range

7. Store private and deniable data on the network via
pings between devices

8. Access the internet anonymously through a central-
ized “peer” server

The first two features we made a necessity since a P2P
client needs to be able to communicate with another peer
and in an accessible way. Then we focused on features
3-5 as the second most important group of features, and
we left features 6-8 as more exploratory ideas that would
be fun to get around to if there was time.

We fully accomplished goals 1, 2, and 8 and partially
accomplished goal 4. Since Wi-Fi Direct runs on many
devices and we use a JSON API for messages, anyone
can write a client for our app that will run on any device
using Wi-Fi Direct. This was tested by forming a P2P
connection with Microsoft’s Wi-Fi Direct demo, without
changing any code. We thought we had accomplished
goal 3, “Use end-to-end encryption for communication,”
since Wi-Fi Direct uses WPA2, but we learned during the
Q&A of the project presentation that this is not the same
thing as end-to-end encryption. §6 contains a further dis-
cussion of this.

The remaining goals (5 and 7) were not implemented
due to time and resource constraints. The parts of the
client we finished during this quarter serves as a proto-
type and foundation for this future work.

4 Application Overview

We implemented the solution using an Android applica-
tion (minimum API 26) and its P2P APIs [5] for Wi-Fi
Direct.

2



Figure 2: The interface is a single screen; both light and dark modes can be used.

The application lets users connect to each other, send
messages to each other, and ask for webpages using the
other’s internet connection. Figure 2 shows what the app
looks like on two phones communicating with each other.

The user begins by pressing the “Discover” button to
advertise their device and populate the peers list on its
right; the user then selects the desired other Android de-
vice on the list to connect to it. Once either “Host” or
“Client” is displayed at the top, they can begin sending
messages to each other. A message of the form “get-
Page url” where url is replaced with a simple url (such
as of the form google.com or cs.washington.edu) will re-
sult in being sent that page from the other phone (e.g.
if the client says “getPage cs.washington.edu”, the host
will download that page through their internet connec-
tion, then deliver it to the client through the Wi-Fi Di-
rect connection. That page will then populate the client’s
WebView. When viewing a webpage, a user can click
on hyperlinks to other urls, which will result in “getPage
url-link” in their text field, which they can send to effec-

tively “browse” internet pages. Throughout this brows-
ing, the client’s identity (IP/ MAC address, other internet
activity) is never exposed to the rest of the internet - only
to the connected server/ WiFi-Direct group. The server
takes on that exposure instead.

5 Implementation and Architecture

Every component of the application communicates with
the Main Activity, as shown in Figure 2. The WiFi P2P
Manager object is provided by Android’s Wi-Fi Direct
API. It notifies our activity of the status of the Wi-Fi Di-
rect connection(s) through intents - Android’s version of
software interrupts or signals which indicate that some
action needs to be performed. Upon initializing the Ac-
tivity, we instantiate our WiFiDirect Broadcast Receiver
and delegate it to respond to specific intents which no-
tify us of WiFi being enabled/ disabled and peer connec-
tions changing; we respond by notifying the user of the
changes through the peers list.

3



Figure 3: System diagram of how the application code is structured.

When the discover button is clicked, the activity calls
the manager to advertise its own device while gather-
ing information of nearby Wi-Fi Direct devices to pop-
ulate the peers list. When a device on the peers list is
clicked, the activity calls the manager to form the con-
nection and declare one node in the group as the group
owner; we then deem the owner the “host” and the oth-
ers as “clients” and notify the user which one they are.
Once this is done, the activity respectively instantiates
the server and client threads with their addresses. The
server opens a server socket, the client creates a socket,
and they both form a TCP connection with each other;
both classes pass the socket to a transceiver thread which
handles all the communication (so currently, host and
client devices communicate symmetrically).

Type Data
Message A chat message
Page HTML of a web page to be read
Request URL of web page to be sent
Chunk A segment of a larger JSON string
Chunk Prefix The number of chunks to expect for an

incoming large JSON string

Table 1: Structure of messages communicated.

All communication is encapsulated by strings en-
coded in a modified UTF-8 format; UTF-8 includes a
2-byte size prefix field to ensure we stream whole strings
like packets. We utilize Kotlin’s DataInputStream and

DataOutputStream which utilize that prefix to handle
sending and receiving those strings. These strings are en-
coded in JSON format, with two fields: Type and Data.
The forms of messages sent are shown in Table 1.

Type Response
Message Add message to the message list and

update the view
Page Unescape the HTML and load it in the

Web View
Request Update the chat log of the interaction;

Download and send the web page’s
HTML.

Chunk Decrement the chunk counter and add
to the string builder. Once the counter
hits zero, extract the whole string and
handle it as a page; clear the string
builder.

Chunk Prefix Set a chunk counter to the number of
chunks and ensure the string builder is
clear.

Table 2: Response to message types.

We use a library called JSoup to download a web
page’s HTML to be sent. In order to send web pages,
we must escape the characters in the HTML to be com-
patible with JSON. Additionally, we must deal with the
length of the string. Since UTF-8’s size prefix is 2 bytes,
the maximum size of a string is 65535 (or 216 −1) char-
acters. Most webpages’ HTML is larger than that, so

4



we must split up messages into multiple chunks. In the
write thread of the transceiver, if the string is longer than
50,000 characters, we split the string into chunks, each
which are less than 50,000 characters long. We chose
this size since it’s less than the maximum length, and
would account for any few additional JSON characters.
We first send over a chunk prefix, which contains the
number of chunks to be sent, then send over each chunk.
The read thread of the transceiver delivers the message to
a handler in the main activity thread. This handler deals
with the received messages according to their type, as
shown in Table 2.

When a link on the WebView which contains a hyper-
link is clicked, we override the default response by in-
stead populating the message field with the url prefixed
with “getPage.”

6 Discussion

The app robustly sends messages and webpages. There is
some noticeable latency with requesting a web page, but
only on the order of magnitude of a few seconds - which
most likely comes from downloading the webpage from
the server’s internet connection.

As it is, the app would enable two trusted parties to
communicate with each other privately - within WiFi
range (less than 100 m) - without using any internet
or cell infrastructures. Through their communication,
no external entities can read their messages or associ-
ated metadata; the client can privately browse the web
through the server, who serves as an exposed access
point. We have achieved our main goals (1-3) (see §3),
and mostly completed goal 7. The extension of goal 7
is to have one access point that is exposed, but service
other nodes who wish to be anonymous on the internet -
as basically a proxy.

The reason we did not just run the server node as a
hotspot and have a client node connect to it is for the
aforementioned complexity - data such as push notifica-
tions will be sent back and forth from the user’s phone
which exposes them. Ideally, we’d find a way to route
just the browser’s HTTP tunnel through the server node,
which would act as an HTTP proxy by acting as an HTTP
server to the client node and an HTTP client to the de-
sired web server, routing HTTP messages back and forth
and thereby shadowing the IP address of the client node.
However, there is no permissible way to do this in An-
droid, i.e. without gaining overprivileged, root access to
the phone.

We thought we had accomplished goal 3, “Use end-
to-end encryption for communication,” since Wi-Fi Di-
rect uses WPA2, but we learned during the Q&A of the
project presentation that this is not the same thing as end-
to-end encryption. WPA2 will protect and encrypt the

messages but only while in transit; the messages will still
be in plaintext at higher levels of the network stack, so
someone could still intercept the messages. We made a
serious error in not fully understanding WPA2 and end-
to-end encryption, but saying that we provided this. If
we had more time on the project, getting end-to-end en-
cryption figured out would be our first task. WPA3 and
WPA2-AES are more secure protocols to begin with.

In order to fulfill goal 6 to have communication be
long-range, we’ll have to switch from WiFi Direct to a
protocol like LoRAWAN, which would have a range of
around 5 kilometers. There is hardware out there, such
as the FiPy board [12], which provides an API to use
TCP/IP sockets like the ones from this project.

Figure 4: A closeup of the FiPy board

There are a host of improvements to be made on the
Android app itself. First and foremost, the app should be
split up into several fragments. Right now, everything is
on a single screen activity. To make it more user-friendly,
there should be an initial screen to discover and connect
to o a peer, a chat screen, and a browser screen. All these
fragments should be connected using Android’s Naviga-
tion Host API. Furthermore, the app would work best
with a Model-View View-Model architecture to make
the data on View objects more persistent and life-cycle
aware.

Goal 7 was an interesting idea inspired by something
the professor mentioned earlier in the quarter about stor-
ing data“in-flight,” i.e. using delay line memory. There
have been a few explorations into this idea but this space
is relatively unexplored [11][6][16]. It wouldn’t have
worked with the Wi-Fi Direct example, since there need
to be at least one of two properties:

1. There should be sufficient latency between nodes
for delay line memory to take effect. This wouldn’t
work with the close-range, low-latency transmis-
sions in Wi-Fi Direct, but could work well with Lo-
RaWAN.

2. There should be multiple nodes in the network rout-
ing and juggling around fragments of data. This
wouldn’t work with only two nodes, but can work
with several.

5



Figure 5: A set up of the FiPy board, along with a solar
panel and antennae, which a friend used. They proto-
typed their protocol over WiFi, then transferred over to
LoRa relatively smoothly.

It’s certainly something to explore for the future.
Note: At the project checkpoint, we had implemented

sending basic messages through the TCP connection, but
had no proper or robust way to check for the beginning/
end of messages - we simply sent data through, and the
transmission was fast enough/ the data was short enough
to pull all of it from the buffer at once. Since the check-
point, we implemented sending large web pages, which
forced us to make messaging proper by creating a pack-
etized protocol. We also changed around the UI as we
added features.

7 Related Work

There are a lot of other apps and class projects that use
Wi-Fi Direct to run a P2P chat app. There is a pretty
simple tutorial on the Android development website that
shows how to use the Wi-Fi Direct API and get connected
to another device [5] which probably explains the popu-
larity.

There are also a lot of peer-to-peer messaging apps for
phones [2]. Some of the more popular apps include Si-
lence and TwinMe [1, 15]. Silence has a downside of
requiring a phone number and only sends messages. On

the other hand, TwinMe allows message, video, photo,
and music sharing as well as group chats. The main dif-
ference between our app and these apps is our ability to
use the P2P connection as a network and browse the web
through a central peer. There is also a lot of other work
on doing networking over a P2P connection such as IPFS
[7] and libp2p [10]. IPFS is a file system over P2P net-
works intended for the sharing of hypermedia [7] and is
similar to what we wanted to achieve with serving HTTP
over the P2P connection. libp2p is a bunch of specifica-
tions, libraries, and protocols that help developers write
P2P networking applications [10].

8 Conclusion

References
[1] Silence app.

[2] Peer to peer app survey, 2008.

[3] Wi-fi direct specification, 2009.

[4] COMMISSION, F. T. Online tracking.

[5] DEVBYTES. Create p2p connections with wi-fi direct, 2019.

[6] EKMAN, E. pingfs - ”true cloud storage”.

[7] JUAN BENET, PROTOCOLLABS. IPFS - content addressed, ver-
sioned, p2p file system.

[8] LING, Z., LUO, J., YU, W., FU, X., XUAN, D., AND JIA, W.
A new cell counter based attack against tor. In Proceedings of the
16th ACM Conference on Computer and Communications Secu-
rity (New York, NY, USA, 2009), CCS ’09, Association for Com-
puting Machinery, p. 578–589.

[9] PERTA, V. C., BARBERA, M. V., TYSON, G., HADDADI, H.,
AND MEI, A. A glance through the vpn looking glass: Ipv6 leak-
age and dns hijacking in commercial vpn clients. Proceedings on
Privacy Enhancing Technologies 2015, 1 (01 Apr. 2015), 77 – 91.

[10] PROTOCOLLABS. libp2p.

[11] PURCZYNSKI, W., AND ZALEWSKI, M. Juggling with packets:
floating data storage.

[12] PYCOM. Fipy board.

[13] STROBEL, D. Imsi catcher, 2007.

[14] SUO, H., WAN, J., ZOU, C., AND LIU, J. Security in the in-
ternet of things: A review. In 2012 International Conference on
Computer Science and Electronics Engineering (2012), vol. 3,
pp. 648–651.

[15] TWINLIFE. Twinme app, 2012.

[16] WIKIPEDIA CONTRIBUTORS. Delay line memory — Wikipedia,
the free encyclopedia, 2020. [Online; accessed 19-December-
2020].

[17] WIKIPEDIA CONTRIBUTORS. Stingray phone tracker —
Wikipedia, the free encyclopedia, 2020. [Online; accessed 19-
December-2020].

6


	Introduction
	Background
	Wi-Fi Direct

	Goals
	Application Overview
	Implementation and Architecture
	Discussion
	Related Work
	Conclusion

