
CRITERION C: DEVELOPMENT

OVERVIEW
 Currently, the only component of the project functioning properly is the desktop text IO

agenda program. This simplistic program fulfills my initial goals, minimizing user interface and

emphasizing functionality. Moreover, the initial goal of assisting in prioritization delves into the

world of artificial intelligence; a simple, more brute-force and greedy algorithm can easily be

integrated later, however, it is not crucial to the crux of the project: adaptive scheduling. The

time span of the agenda is currently applicable to a single, 24 hour day with individual

continuous tasks, eliminating the need for “task categories.” In effect, the data structures have

been greatly simplified yet the algorithms are still complex but not enigmatic.

USER INTERFACE

DATA STRUCTURES & ORGANIZATION
 There are seven classes involved in the program:

IMPORTANT ALGORITHMS
Chronologically Sort

The “chronologicallySort” method orders the events list according to time, from soonest to

latest. This is used all throughout the program.

Prioritize Tasks

The “prioritzeTasks” method orders the tasks according to priority, from highest to lowers

priority. This method is used quintessentially in scheduling tasks.

Update Free Time

The “getFreeTime” method involves both updating the freeEvents list and the user

interface. This is the first part of the algorithm:

This part of the method updates the freeEvents list, which contains a list of events that are

free time. Since busy events in the agenda have a start times and an end times, this algorithm

creates free events from end times to start times. First the program acquires the first space of free

time: from the beginning of the day to the first event. Then, the program loops through the

agenda to get all the space in between events. Finally, it gets the last space from the end of the

last event to the end of the day.

At this point, the method has acquired all the free time for the entire day. However, when

timing tasks, one needs to time tasks in the future, not in the past. Therefore, the free time list

needs to be truncated to only contain free time in the future to properly schedule tasks. This is

done by the rest of the algorithm shown above.

Time Tasks

 This is the central method of the program. It operates by first clearing the agenda, adding

only the static events, then chronologically sorting it. Then, it loops through each task, placing

the task at the soonest slot of free time that fits.

Find If Enough Time

 This method checks to see if the tasks are compatible with the amount of free time left.

There will not be enough free time if the largest space of free time is less than the largest task

duration, or if the total free time is less than the total tasks time.

